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The current problem of substantiating non-stationary linearizations for complex, non-periodic motions 
is remarkably similar to the situation 120 years ago. The founders of the theory of automatic control, 
Maxwell (1868) and Vyshnegradskii (1876) [1], boldly carried out linearization in the neighbourhood 
of steady motions, leaving the substantiation of such linearization to Poincar6 (1886) and Lyapunov 
(1892). Among a wide circle of chaotic dynamics specialists, the firm conviction arose that the positiveness 
of the highest characteristic exponent of a first-approximation linear system implies instability of the 
solutions of the initial system (see, for example, [2, p. 227; 32 p. 72; 4, p. 26; 5, p. 323; 6]). Moreover, 
there have been a vast number of computer experiments where different numerical procedures have 
been used to calculate the characteristic exponents and Lyapunov exponents of first-approximation 
linear systems. Here, the authors, in general, entirely ignoring the substantiation of the linearization 
procedure, have constructed, from the numerical values of the characteristic exponents obtained, differ- 
ent numerical characteristic of attractors of the initial non-linear systems (Lyapunov dimensionalities, 
metric entropies, etc.) 

Occasionally, partial substantiation of a linearization procedure is deduced using computer experi- 
ments. For example, computer experiments [2, 7] show agreement between the Lyapunov and Hausdorff 
dimensionality of Xenon, Kaplan-York and Zaslavskii attractors. However, for Xenon and Lyapunov 
B-attractors there is no such agreement [8, 9]. 

This paper is devoted to the problem of substantiating a linearization procedure where a first- 
approximation system has a positive characteristic exponent. It is shown that, in this case, Perron effects 
of sign inversion of characteristic exponents of the solutions of the initial system and of the first- 
approximation system under the same initial conditions can be observed; these effects indicate the 
difficulties that must be overcome when substantiating the linear procedure. The Krasovskii and 
Lyapunov instability criteria are proved using the Perron-Vinograd triangulation method. 

1. P E R R O N  EFFECTS 

Perron [10] discovered the effect of sign inversion of characteristic exponents for the solutions of special 
classes of non-linear systems and their first approximations. He constructed a non-linear system, the 
first approximation of which had negative characteristic exponents, while nearly all its solutions possessed 
positive characteristic exponents. 

Here we will examine the analogous effect of a change in the sign of characteristic exponents "the 
other way round": the solution of the first-approximation system has a positive characteristic exponent 
while the solution of the initial system with the same initial data has a negative characteristic exponent. 
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Consider the system 

on an invariant manifold 

G. A. Leonov 

xl = [ s i n l n ( t + l ) + c o s l n ( t + l ) - 2 a ] x  l + x 3 - x  2 

ff2 ~ -ax3, -~3 = -2ax3 

M = {xl  Rl, =x3}  

The number a satisfies the condition 

1 < 2a < 1 + exp(-n) /2  

The solution of system (1.1) on the manifold M have the form 

Xl( t  ) = exp[(t  + 1) sin In (t + 1) - 2at]xl(O ) 

x2(t) = exp[-at]x2(O),  x3(t) = exp[-2at]x3(O); X3(0 ) = X2(0) 2 

(1.1) 

(1.2) 

It is obvious that these solutions have negative Lyapunov exponents. 
The solution of the first-approximation system 

2-1 = [sinln(t + 1)+ cosln(t  + 1 ) - 2 a ] z l  +z3 

2-2 = -az2, 2.3 = -2az3 (1.3) 

on the manifold M have the form 

z l ( t )  = exp[( t+  1)s in ln( t+  1 ) - 2 a t ] x  

x z~(0)+z3(0) e x p [ - ~ + l l s i n l n ( ~ + l )  d'c 
0 

z2(t) = exp[-at lz2(O),  z3(t) = exp[-2at]z3(O); z3(0) = z2(0) 2 

Assuming that t = exp[(2n + 1/2)x] - 1, where n is an integer, we obtain the estimate [11, p. 369] 

t 

;exp[-( 'c  + 1)sinln('~ + 1)ld'c > 
o 

> expI~(t  + 1 ) exp( -~ ) ] ( t  + 1 ) [ e x p ( - ~ )  - exp(-g)] 

Therefore, for the given values of t, we have the inequality 

t 

exp[(t + 1)sin ln(t + 1 ) - 2a t ] ;exp [-('c + 1) sin ln('~ + 1 )ldx > 

0 

1 
> exp[~(2 + e x p ( - x ) ] [ e x p ( - ~ ) - e x p ( - g ) l e x p [ ( 1 -  2a + ~exp(-g)) t  1 

Hence, on the manifold M when z3(0) * 0, the following inequality holds 

lim+~ ~[lnlz,(t) I > 0 
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Note that, for any solutions of systems (1.1) and (1.3), we have the relations 

( X 2 ( t )  2 - X 3 ( t ) )  ° = - 2 a ( x 2 ( t )  2 - x3( t ) )  

(z2( t) 2 - z3(t))" = - 2 a ( z z (  t) 2 - z3(t)) 

Therefore 

x2(t) 2 - x3(t ) = exp [-2at] [ X 2 ( 0 )  2 -- X 3 ( 0 ) ]  

2 
Z2(t ) - z3(t ) = exp [-2at] [ Z 2 ( 0 )  2 -- Z 3 ( 0 ) ]  
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x 2 ( t )  2 - X 3 ( t  ) < exp[-2at] X 2 ( 0 )  2 -- X3(0) l  

Thus, systems (1.1) and (1.3) have the same invariants exponentially attracting manifold M on which 
almost all solutions of the first-approximation system (1.3) have a positive characteristic exponent, while 
all solutions of the initial system (1.1) have negative characteristic exponents. 

Here, the Perron effect is observed on the entire manifold 

{ x l s  R l, x 3 = x ~ * 0 }  

In order to construct an exponentially stable system whose first approximation has a positive 
characteristic exponent, we will change system (1.1) in the following way 

3~1 "= [ s i n l n ( t  + 1) + c o s l n ( t  + 1) - 2 a l x  1 +x 3 -x2  z 

3f 2 _-- F(x2, x3), 2 3 = G(x2, x 3) 

The function F(x2, x3) and G(x2, x3) have the form 

(1.4) 

F(x  2, x 3)  = + 2 x  3 - a x  2, G ( x  2, X 3) = T-x2-1P(x2, x 3) 

where the upper sign is taken when x2 > 0, x3 > x 2 and when x2 < 0, x3 < x2 2, and the lower sign is taken 
when x2 > 0, x3 < x2 2 and when x2 < 0, x3 > x 2. The function ~p(x2, x3) is defined as following: 

I 4 a x  when x 3 > 2x~ and when x 3 < -2x~ 
{P(X2' X3)  = 2 2 

L 2 a x  3 when -2x 2 < x 3 < 2x 2 

and 

The solutions of system (1.4) are understood in Filippov's sense [12]. According to this definition 
for the function F and G, the system 

JC 2 = F(x  2,X3), -17 3 = G(x 2,x3) ( 1 . 5 )  

on lines of discontinuity {x2 = O} and {x3 = ~ }  has sliding solutions, which are described by the equations 

x 2 ( t ) - O ,  23(t) = - 4 a x 3 ( t )  

) / 2 ( t )  = -ax2( t ) ,  2 3 ( t )  = -2ax3( t ) ,  x 3 ( t )  = x2(t) 2 

Here, the solutions of system (1.5) with the initial data x2(0) ;~ 0, x3(0) ~ R 1 fall on the curve 
{x3 = x~} in a finite time not exceeding 2re. The phase portrait of such a system is shown in Fig. 1. 

Hence we conclude that the manifold M is an exponentially attracting invariant set for systems (1.1) 
and (1.3). This means that, from the relation x2(0) 2 = x3(0), we have the equality x2(t) 2 = x3(t ) for all 
t ~ R 1, and that for any initial conditions 
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X 3 

X2 

Fig. 1 

From the considerations given here it follows that, for the solutions of system (1.4) with the initial 
data 

Xl(0) E R 1, x2(0)~0 ,  x3(0)~ R 1 

at t > 2rt, the inequalities 

F(x2(t), x 3 ( t ) )  = -ax2(t), G(x2(t), x 3 ( t ) )  = -2ax3(t ) 

occur. Therefore, in such solutions, system (1.3) is a first-approximation system when t _ 2re. 
As shown above, this system has a positive characteristic exponent. At the same time, all solutions 

of system (1.4) tend to zero exponentially. 

2. I N S T A B I L I T Y  C R I T E R I A  

Consider the system 

dx/dt = A(t)x+ f ( t , x ) ,  t>O, x ~  R" (2.1) 

where A(t) is continuous n x n matrix bounded in [0, oo]. We will assume that the vector function 
f(t, x) is continuous and, in a certain neighbourhood ~(0)  of the point x = 0, the inequality 

If(t, x)[ _< lclx[ v, Vt _> 0, Vx e f2(0) (2.2) 

holds. The number ~ and v are such that ~: > 0 and v > 1. 
We recall here the definition of Lyapunov and Krasovskii stability. 

Definition 1. The solution x(t) = 0 of system (2.1) is termed Lyapunov stable if, for any e > 0 and 
to -> 0, a number 6(e, to) exists such that, for the solution x(t, to, x0) satisfying the condition [x0l < 6(e, to), 
the inequality 

Ix(t, to, x0)[ - ~, v t _  to 

is satisfied. 

Definition 2. The solutionx(t) -- 0 of system (2.1) is termed Krasovskii stable if positive numbers 8(t0) 
and R(to) exist such that, for solutions x(t, to, x0) satisfying the condition Ix0[ <- 5(t0), the inequality 

Ix(t, to, xo)l - R(to)lxol, vt>_ to 

is satisfied. 
We recall that, by definition, Lyapunov (Krasovskii) instability is a negation of the corresponding 

type of stability. 
We will introduce into consideration the normal fundamental matrix 

Z(t) = (zl(t) . . . . .  zn(t)) (2.3) 
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consisting of linearly independent  solutions zj(t) of the first-approximation linear system 

dz/dt = A(t)z (2.4) 

To analysis the instability, we will use the Perron-Vinograd method of triangulation of a linear system 
[10, 13]. 

We will carry out the Schmidt orthogonalization procedure for the solution zj(t) forming matrix (2.3) 

1) l ( t  ) = Zl(t) 

o2(t ) = zz( t ) -Ol( t )*z2(t  ) °l~(t)2 

1°l(/)1 (2.5) 

On(t) = zn(t)- 1) l ( t )*zn( t ) .~2 "'" 19n-l(t)*Zn(t) ~ 2  
]vl(t)l o,_1(0 

The asterisk denotes transposition. 
The equalities 

1)i(t)*l)j(t ) = 0 ,  V j # i ;  [vj(t)l 2 = 1)j(t)*zj(t) (2.6) 

follow from relations (2.5). The following assertion follow from the latter equality. 

Lemma 1. The following estimate holds 

Ivj(t)l_< Izj(t) I, Vt_>0 (2.7) 

The answer to the question as to how greatly the vector function uj(t) may decrease compared with 
the initial system of vector zj(t) gives the following assertion. 

Lemma 2. If for a certain number  C the inequality 

n l 

I-I IzJ(t)l -< Cexpftra(s)ds,  Vt > 0 (2.8) 
j = l  0 

if satisfied, then a number  r > 0 exists for which the following estimate holds 

Izj(t)l<_rloj(t)l, Vt>_O, j = 1 . . . . .  n (2.9) 

Proof. We will introduce into consideration the matrix 

( Z l ( t )  Zn(t) 

From the Ostrogradskii-Liouville formula [13] and inequality (2.8) we have the relation 

t 

Idet~(t)/ = laet(z,(0) ..... zn(0)) I(]z~(/)[ ..... izn~t) I)-lexpftra(s)ds > 

0 

_>c-lldet(z~(0) ..... z~(0)) I, Vt_>O 

From this it follows that, for the linear subspace L(t) drawn on the vectors zl(t) . . . .  , Zm(t) (m < n), 
a number  e ~ (0,1) will be found such that the estimate 

IZm+l(t)*e(t) I 
iZm+l(t) I -<1-~, Vt->O (2.10) 

holds for all e(t) ~ L(t) satisfying the equality le(t) l = 1. 
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Relations (Z5) when j  > 1 can be rewritten as follows: 

j -  1( l)i(t)Oi(t)*" ~ Zj(t) 
oj(t) = l"I I (2.11) 

where I is the identity matrix. 
We will now assume that the assertion of the lemma does not occur. In this case a sequence 

tg --4 + ~  exists for which 

1" OJ(tk) 
lm ~ = 0  ~,--,+=lzj(tk)l 

But then, from equality (2.11) we obtain that a number 1 < j exist for which 

,. [" zj(tk) I~l(t k) ] = 
k.mLizct~)l [~t--~Sk)l/ 0 (2.12) 

Since vl(t) ~ L(t) ,  relation (2.10) and (2.12) are contradictory. The contradiction obtained proves 
estimate (2.9). 

From the reasoning set out here it can be seen that condition (2.8) is a necessary and sufficient 
condition for a number r > 0 to exist for which estimate (2.9) is satisfied. 

Note that condition (2.8) is the necessary and sufficient condition for non-degeneracy when t ~ + ~  
of the normalized fundamental matrix of the first-approximation system (2.4) 

lim [detZ(t)[ > 0 
t --> 4 - ~  

We will now describe the Perron-Vinograd triangulation procedure. 
We will introduce the unitary matrix. 

l)l(t) l)n(t) 

u(t) = i~,(t)  I . . . . .  I lJ 
and make the following change in system (2.4): z = U(t)w. 

From the unitary nature of the matrix U(t) it follows that for the columns wj(t) of the matrix 

W(t)  = (wl( t )  . . . . .  wn(t)) = U ( t ) * Z ( t )  

the relations Iwi( t ) [  = Izj(t) l are satisfied. 
From relations (2.5) and (2.6) it follows that the matrix W(t) has the following triangular form 

W(t)  = 
Iol(t)l . . .  

o Iv.(t)l 
(2.13) 

The matrix W(t) is the fundamental matrix of the system 

dw/d t  = B( t )w (2.14) 

where 

B(t)  = U ( t ) - l A ( t ) U ( t )  - U(t)  -1 (J(t) (2.15) 

From the fact that W(t) is a higher triangular matrix it follows that W(t) -1 and Iiz(t) are also higher 
triangular matrices. Therefore, the matrix 

B(t)  = W( t )W( t )  -1 



First-approximation instability criteria for non-stationary linearizations 833 

is a higher triangular matrix of the form 

B(t) = 
(lnlol(t)[)" ... 

• .. ." 

0 (lnlv,(t)l)" 

(2.16) 

We will show that, if the matrixA(t) is bounded when t > 0, then the matrices B(t), U(t) and U(t) are 
also bounded when t > 0. Boundedness of the matrix U(t) always occurs and is obvious. Therefore, the 
matrix 

U(t)-lA(t) U(t) = U(t)*A(t)U(t)  

is also bounded. 
From the unitary nature of the matrix U(t) we have the identity 

(U(t) -~ (J(t))* = -U( t )  -1U(t) (2.17) 

From this, and from relations (2.15) and (2.16), it follows that the modulus of an element of the matrix 
U(t) -1 (J(t) is identical with the modulus of a certain element of the matrix U(t)-IA (t)U(t).Thus, the matrix 
U(t) -l[j(t) is bounded when t > 0 .The boundedness of the matrix B(t) follows from this and from equality 
(2.15). The boundedness of U(t) follows from the boundedness of B(t) and the equality U(t) = 
A(t)U(t) - U(t)B(t). 

We will now prove one further useful estimate for the vector function vn(t). 

Lemma 3. The following estimate holds 

[-t  7 n _  1 

IOn(t)l > expl ftrlj A (s)dSll I-I  II)j(~)l 
Iz/t)l 

Proof. From relation (2.13) we have the equality 

n - I  

det W(t) I I  
Iv,(t)l _ j= t 

Iu.( )l . - ,  
det W(~) I-I I j(')l 

j = l  

(2.18) 

From the Ostrogradskii-Liouville formula and relations (2.14), (2.15) and (2.17) we have the equalities 

t t 

det W(t) = det W(~)expftrB(s)ds = det W('c)ItrA(s)ds 

The lemma follows immediately from these equalities and estimate (2.7). 
The triangulation method described above and Lemma 3 enable the following result to be made almost 

obvious. 

Theorem 1. If the inequality 

sup'imrlz(itrA(s'as- lnlz'(t'll]>Ok,-- '  ,- (2.19) 

is satisfied, the solution x(t) - 0 of system (2.1) is Krasovskii unstable. 

Proof. Without loss of generality, it can be assumed that in condition (2.19) the supremum with respect 
to k is attained when k = n. 
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We will make the change x = U(t)y in system (2.1) 

dy/dt = B(t)y + g(t, y); g(t, y) = U(t)-l f ( t ,  U(t)y) (2.20) 

The matrix B(t) is determined from formula (2.15). 
Thus, the final equation of system (2.20) will take the form 

Yn = (ln[v,(t)[)'Yn + gn( t, Y) (2.21) 

Here, Yn and gn are the nth components of the vectors y and g. 
We will now assume that the solution x(t) -- 0 is Krasovskii stable. This means the existence for a 

certain neighbourhood x = 0 of a number R > 0 such that the estimate 

Ix(t, x0) I _ nix0 I, Vt_  0 (2.22) 

is satisfied. Here, x(0, x0) = x0. 
From conditions (2.2) and (2.22) we have the estimate 

Ig(t, y(t))[ <_ ~:RVly(0)l v (2.23) 

From conditions (2.19), according to Lemma 3, we will obtain the existence of a number g > 0 such 
that, for sufficiently high values of t, the following estimate holds 

lnlv.(t) I > I-tt (2.24) 

Note that the solutionyn(t) of Eq, (2.21) can be represented in the form 

Iv"(t)l( "" '+/r lv"(0)l  "s I y n ( / )  = ~yn,U) ~ g t , y ( s ) ) d s  (2.25) 

From estimate (2.24) it follows that a number 9 > 0 exists such that the inequality 

t 

I[v"(O)!ds<_p, Vt>O (2.26) 
0lv.(s)l 

is satisfied. 
We will now take the initial conditionsx0 = U(0)y(0) such thaty~(0) = [y(0) I = 5, where 5 > pv,~RV8 v. 

In this case, from relations (2.23) to (2.26) we obtain for sufficiently high t > 0, the estimate 

y~(t) > exp(gt)(8 - p~RV~5 v) 

From this we immediately have the relation 

lira yn(t) = +~ 

This relation contradicts the assumption concerning the Krasovskii stability of the trivial solution of 
system (2.1). The theorem is proved. 

Remark regarding the method for proving Theorem 1. If the presence of Lyapunov stability were assumed 
and an attempt were made to derive a contradiction to this, just as was done in the proof in relation 
to Krasovskii stability, then in this case it would be necessary to prove the inequality 

yn(O) + [ !vn!O!!g(s, y(s))ds sO (2.27) 
o IV"tS)l 

This inequality is easy to ensure when it is a matter of Krasovskii stability, and the need to prove it is 
a difficult obstacle to overcome when considering Lyapunov stability. 
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An analogous scheme for reducing the problem to a single scalar equation of type (2.21) was used 
by Chetayev [14, 15] when obtaining instability criteria. A similar difficulty in proving inequality (2.27) 
also exists in the scheme proposed by Chetayev. Therefore, the Chetayev method now enables the 
Krasovskii instability criteria to be obtained. 

The procedure for obtaining Lyapunov instability criteria requires further development. Such a 
development with certain additional limitations will be given in Theorem 2. 

Condition (2.19) of Theorem 1 is satisfied if the inequality 

A - F > 0 (2.28) 

holds. Here, A is the maximum characteristic exponent and F is the incorrectness coefficient [13]. We 
recall that 

t 

F = X;- lim l f t rA(s)ds  
0 

The condition for Krasovskii instability (2.28) was obtained by Chetayev [14, 15] with a stronger 
requirement for the analyticity of the function f(t, x). 

Note also that, for system (1.3), F = A + 2a + 1. Therefore, condition (2.28) for the systems examined 
in Section i is not satisfied. 

Theorem 2. If, for certain numbers C > 0, 13 > 0, %. < 13 (j = 1, . . . ,  n - 1) the conditions 

n t 

FI IzJ(t)l <- Cexpl t ra(s )ds '  V t> 0 when n > 2 
j = l  0 

(2.29) 

Izj(t)l < Cexp(o~j(t- 'c))]zj(x) I, Vt > "c > O, V j  = 1 . . . . .  n -  1 (2.30) 

t n - I  

! iltrA(s)ds> Z' J' 
"c j = l  

Vt > "c > 0 (2.31) 

are satisfied, then the zero solution of system (2.1) is Lyapunov unstable. 

Proof. We recall that the fundamental matrix W(t) of system (2.14) has the form of (2.13). The column 
vectors of this matrix wj(t) (j = 1 . . . . .  n - 1) have the form 

w ~ ( t )  = 

Wll(t) / 
0 . . . . .  Wn_ l(t) = 

0 

w,_ l , l ( t )  

W~_l,~- l(t) 

0 

Therefore, the matrix l~(t), obtained by cancelling out the final column and the final row of the matrix 
W(t), is the fundamental matrix of the system 

= B(t)w, ~ R n-I 

with the matrix/}(t), obtained by cancelling out the final column and the final row of the matrix B(t). 
Condition (2.30) and the identities I wj(t) I - Izi(t) I, which follow on from the unitary nature of the 

matrix U(t), yield the estimates 

]~j(t)] __. Cexp(o~j( t-  z))l~j(~)[, Vt > 1: > 0, Vj = 1 .. . . .  n - 1 (2.32) 

Furthermore, condition (2.29), according to Lemma 2, yields the estimates (2.9), and conditions (2.30) 
and (2.31), according to Lemma 3, give the estimate 

n - 1  

IOn(t)l > c l - " e x p ( f 3 ( t - ~ ) ) E l o J ( ' c ) l  Vt>'c>O 
- = I z j m l '  - 

(2.33) 
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From relations (2.9) and (2.33) we obtain the inequality 

IOn(t)[ >(Cr)l-nexp(~(t_.C)), Vt_>T>O 
Iv.( )l - 

Since when n = 2 we have ~01(t) = Zl(t), from inequality (2.33) we obtain the estimate 

IVz(t)l > C- lexp( l ] ( t -~ ) ) ,  Vt>'c_>0 
Io2( )1 - 

without assumption (2.29). 
For system (2.1) we now make the replacement 

x = edtU(t)y 

Here, we choose the number d > 0 such that 

o r < d <  15 

where 

ot = maxotj, j = 1 . . . . .  n - 1  

As a result of this replacement, we obtain the system 

a y  = ( B ( t )  - d n y  + g(t, y) 
dt 

where 

(2.34) 

(2.35) 

(2.36) 

for n ¢ 2, from relation (2.34) we have the estimate 

[y.(t) [  > (Or)  1 -"exp 1(13 - d ) ( t -  z)lly.(z) l, 

For the scalar equation 

p. = [ ( l n l v n ( t ) l ) ' - d l y  ", yn e R 1 

Vt>-c>O 

= ( B ( t ) -  dl)~, ~ • R n-1 (2.38) 

by virtue of relations (2.32) we have to estimate 

]~(t)l <- Cexp[(ot -  d ) ( t -  "0]]Y('~)], Vt > "c 

Therefore, by Malkin's theorem [11], a continuously differentiable matrix H(t) bounded on [0, + ~ )  
and positive numbers Pl and P2 exist for which 

~*(H(t)  + 2n([Y( t ) -d l ) )~<-p l l~ l  2, V ~  R "-1, Vt__0 (2.39) 

~*H(t ) }>pz l~y l  2, V ~ e R  "-1,  Vt>O (2.40) 

Note that for the system 

g(t, y) = e-dtU(t)-l f ( t ,  edtU(t)y) 

From condition (2.2) it follows that, for any number 9 > 0, a neighbourhood O(0) of point y = 0 
exists such that 

[g(t, Y)I <-- PlYl, Vt >_ 0, Vy c O(0)  (2.37) 
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When n = 2, the analogous estimate has the form 

ly2(t)[ _> C -1 exp[(13 - d ) ( t  - "c)]]y2(x)l, Vt_> x _ 0 

Therefore, by Malkin's theorem [11], a continuously differentiable function h(t) bounded on [0, + ~ ]  
and positive numbers P3 and P4 exist for which 

h(t) + 2h(t)[(inlOn(t)l) '-d] <-93 ,  h(t)_<-p4, Vt>O (2.41) 

We will now show that the function 

V(t, y) = ~*H(t)~ + o~h(t)y] 

for sufficiently large co will be a Lyapunov function satisfying, for system (2.36), all the conditions of 
Lyapunov's classical instability theorem. 

Indeed, system (2.36) can be written in the form 

y = (B(t) - dl)~ + q(t)y n + g(t, y, Yn) 
(2.42) 

p. = ( ( ln lo . ( t )  I ) ' -  d)Yn + gn(t, y, yn) 

where q(t) is a certain vector function bounded in [0,+~],  and ~ and gn are such that 

~,(t,y) 
g(t, y) = 

g~(t,y) 

Therefore, from estimates (2.39) and (2.41) we have the inequalities 

f'(t, y) _< - pll~l 2 - top3y ] + 2y*H(t)q(t)y n + 

+ 2~*n(t)~(t ,  ~, y~) + 2toh(t)y,gn(t, ~, y~) < 

- 2  2 
- -  Pllyl - o)P3yn + 2[(ly~ll?vlsuplH(t)llq(t)l + 

t 

+ I~lsuplH(t)l P(l~l + [Y~I) + °~lyn]suplh(t)l p(l~l + ly~l) ] 
t t 

From these inequalities and the boundedness when t _> 0 of the matrix function H(t), the vector function 
q(t) and the function h(t), it follows that, for sufficiently large co and sufficiently small p, a positive number 
0 will be found for which 

I?(t, y) < -01y[ 2 (2.43) 

The boundedness of H(t) and h(t) result in the existence of a number a for which 

]yl2>-aV(t ,y) ,  Vt>0 ,  V y e  R" 

Therefore, from this and from inequality (2.43) we have the inequality 

~'( t ,y)<aOV(t ,y) ,  Vt>O, V y ~ R  n (2.44) 

We will now take the initial datay(0) such that V(O,y(O)) < 0. Then, from inequality (2.43) it follows 
that 

V(t ,y( t))<O, Vt>O 

and, by virtue of inequality (2.44), we have the estimate 
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-V(t,  y(t)) > ea°'(-V(O, y(0))) 

From this and from inequalities (2.40) and (2.41) we have the inequality 

-O)h(t)yn(t) 2 > ea°t(-V(O, y(0))), Vt > 0 

Thus 
aOt 

e 
Yn( t) z >- 03sup(_h( t) ) ( -V(  O, y(0))) (2.45) 

t 

The Lyapunov instability of the solutiony(t) - 0 follows from this inequality. Moreover, from estimate 
(2.45) it follows that, in the neighbourhood ofy = 0, the solution y(t) with initial data V(0, y(0)) < 0 
increases exponentially. 

Since d > 0 and U(t) is a unitary matrix, the zero solution of system (2.1) is also Lyapunov unstable. 
Note that the requirement of uniformity with respect to z in estimates (2.30) and (2.31) is also 

characteristic of the first-approximation stability criteria [11, 16, 17]. 
The problem of weakening the instability conditions obtained in Theorems 1 and 2 naturally arises. 

However, the Perron effects described in Section 1 set limits to such weakening. 
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